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MACHINE TRANSLATION
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(Forcada&Ñeco, 1997, Kalchbrenner&Blunsom, 2013; Cho et al., 2014; Sutskever
et al., 2014)From Sequence Modeling to Translation, Kyunghyun Cho, https://t.co/sDjI2k4cS8
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THE A.I. SPECTRUM



SYMBOLYSM VS CONNECTIONISM 

http://web.media.mit.edu/~minsky/papers/SymbolicVs.Connectionist.html



THE DEEP LEARNING REVOLUTION
THE DEEP LEARNING REVOLUTION

The Deep Learning Revolution: Rethinking Machine Learning Pipelines. Soumith Chintala

End-to-end learning (no feature engineering), chained cascade of non-linear 
transforms.End-to-end learning (no feature engineering), chained cascade of non-linear transforms.

The deep learning revolution: rethinking machine learning pipelines. Soumith Chintala



NEURAL NETWORKS

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

NEURAL NETWORKS
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BACK-PROPAGATION
Neural networks vs computation graphs?

● Neural networks are trained via back-propagation
● Every node has f(x) and df(x)/dx
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CONVOLUTIONAL NETWORKS

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/



DEEP LEARNING AND MEDICAL IMAGING

Litjiens et al. A survey on deep learning in medical image analysis. arXiv:1702.05747 2017



Figure 3: Collage of some medical imaging applications in which
deep learning has achieved state-of-the-art results. From top-left to
bottom-right: mammographic mass classification (Kooi et al. (2016)),
segmentation of lesions in the brain (top ranking in BRATS, ISLES
and MRBrains challenges, image from Ghafoorian et al. (2016b), leak
detection in airway tree segmentation (Charbonnier et al. (2017)), di-
abetic retinopathy classification (Kaggle Diabetic Retinopathy chal-
lenge 2015, image from van Grinsven et al. (2016)), prostate seg-
mentation (top rank in PROMISE12 challenge), nodule classification
(top ranking in LUNA16 challenge), breast cancer metastases detec-
tion in lymph nodes (top ranking and human expert performance in
CAMELYON16), human expert performance in skin lesion classifi-
cation (Esteva et al. (2017)), and state-of-the-art bone suppression in
x-rays (image from Yang et al. (2016c)).

SAEs to normalize H&E-stained histopathology images
whereas Benou et al. (2016) used CNNs to perform de-
noising in DCE-MRI time-series.

Image generation has seen impressive results with
very creative applications of deep networks in signifi-
cantly di↵ering tasks. One can only expect the number
of tasks to increase further in the future.

3.5.3. Combining Image Data With Reports
The combination of text reports and medical image

data has led to two avenues of research: (1) leverag-
ing reports to improve image classification accuracy
(Schlegl et al. (2015)), and (2) generating text reports
from images (Shin et al. (2015, 2016a); Wang et al.
(2016e); Kisilev et al. (2016)); the latter inspired by
recent caption generation papers from natural images
(Karpathy and Fei-Fei (2015)). To the best of our
knowledge, the first step towards leveraging reports was
taken by Schlegl et al. (2015), who argued that large

amounts of annotated data may be di�cult to acquire
and proposed to add semantic descriptions from reports
as labels. The system was trained on sets of images
along with their textual descriptions and was taught to
predict semantic class labels during test time. They
showed that semantic information increases classifica-
tion accuracy for a variety of pathologies in Optical Co-
herence Tomography (OCT) images.

Shin et al. (2015) and Wang et al. (2016e) mined se-
mantic interactions between radiology reports and im-
ages from a large data set extracted from a PACS sys-
tem. They employed latent Dirichlet allocation (LDA),
a type of stochastic model that generates a distribution
over a vocabulary of topics based on words in a docu-
ment. In a later work, Shin et al. (2016a) proposed a sys-
tem to generate descriptions from chest X-rays. A CNN
was employed to generate a representation of an image
one label at a time, which was then used to train an
RNN to generate sequence of MeSH keywords. Kisilev
et al. (2016) used a completely di↵erent approach and
predicted categorical BI-RADS descriptors for breast
lesions. In their work they focused on three descrip-
tors used in mammography: shape, margin, and density,
where each have their own class label. The system was
fed with the image data and region proposals and pre-
dicts the correct label for each descriptor (e.g. for shape
either oval, round, or irregular).

Given the wealth of data that is available in PACS
systems in terms of images and corresponding diag-
nostic reports, it seems like an ideal avenue for future
deep learning research. One could expect that advances
in captioning natural images will in time be applied to
these data sets as well.

4. Application areas

This section presents an overview of deep learning
contributions to the various application areas in medi-
cal imaging. We highlight some key contributions and
discuss performance of systems on large data sets and
on public challenge data sets. All these challenges are
listed on http:\\www.grand-challenge.org.

4.1. Brain
DNNs have been extensively used for brain image

analysis in several di↵erent application domains (Ta-
ble 1). A large number of studies address classification
of Alzheimer’s disease and segmentation of brain tis-
sue and anatomical structures (e.g. the hippocampus).
Other important areas are detection and segmentation
of lesions (e.g. tumors, white matter lesions, lacunes,
micro-bleeds).

14

Mammography Brain lesions Airways

Diabetic retinopathy Prostate Lung nodule classification

Breast cancer metastases 
detection in lymph nodes

Skin lesions Bone suppression
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intracranial haemorrhage, 0·96 (0·92–1·00) for calvarial 
fracture, and 0·97 (0·94–1·00) for midline shift.

In a com parison of the performance of the algorithms 
to that of the radiologists on the CQ500 dataset, at high 
sensitivity operating point, sensitivities of algorithms 
and radio logists were not significantly different (p>0·05) 
but algorithms’ specificities were significantly lower 
(p<0·0001; appendix pp 8–9).

Discussion
To our knowledge, our study is the first to describe the 
development of a system that separately identifies critical 
abnormalities on head CT scans and to conduct 
a validation with a large number of scans sampled 
uniformly from the population distribution. We also 
report the algorithms’ accuracy versus a consensus of 
three radiologists on a second independent dataset, the 
CQ500 dataset. We have made this dataset and the 
corresponding reads available for public access so that 
they can be used to benchmark comparable algorithms in 
the future. Such publicly available datasets had earlier 
spurred comparison of the algorithms in other tasks such 
as lung nodule detection25 and chest radiograph diagnosis.6

Automated and semi-automated detection of findings 
from head CT scans have been studied by other groups. 

Grewal and colleagues9 developed a deep learning 
approach to automatically detect intracranial haemor-
rhages. They reported a sensitivity of 0·8864 and a 
positive predictive value (precision) of 0·8124 on a 
dataset of 77 brain CT scans read by three radiologists. 
However, the types of intracranial haemorrhage 
considered were not mentioned in their report. 
Traditional computer vision techniques such as 
morphological processing were used by Zaki and 
colleagues26 to detect fractures and by Yamada and 
colleagues27 to retrieve scans with fractures. Neither of 
the two studies measured accuracies on a clinical 
dataset. Automated midline shift detection was also 
explored28–30 using non-deep learning methods. 
Convolutional neural networks were used by Gao and 
colleagues8 to classify head CT scans to help diagnose 
Alzheimer’s disease. More recently, Prevedello and 
colleagues 31 assessed the performance of a deep learning 
algorithm on a dataset of 50 scans to detect haemorrhage, 
mass effect, or hydrocephalus, and suspected acute 
infarct. The investigators reported AUCs of 0·91 for 
haemorrhage, mass effect, or hydrocephalus, and 0·81 
for suspected acute infarct.

Our work is novel because it is the first large study in 
which the use of deep learning on head CT scans is used 

AUC (95% CI) High sensitivity operating point High specificity operating point

Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Qure25k dataset

Intracranial 
haemorrhage

0·9194 (0·9119–0·9269) 0·9006 (0·8882–0·9121) 0·7295 (0·7230–0·7358) 0·8349 (0·8197–0·8492) 0·9004 (0·8960–0·9047)

Intra-
parenchymal

0·8977 (0·8884–0·9069) 0·9031 (0·8894–0·9157) 0·6046 (0·5976–0·6115) 0·7670 (0·7479–0·7853) 0·9046 (0·9003–0·9087)

Intraventricular 0·9559 (0·9424–0·9694) 0·9358 (0·9085–0·9569) 0·8343 (0·8291–0·8393) 0·9220 (0·8927–0·9454) 0·9267 (0·9231–0·9302)

Subdural 0·9161 (0·9001–0·9321) 0·9152 (0·8888–0·9370) 0·6542 (0·6476–0·6607) 0·7960 (0·7600–0·8288) 0·9041 (0·9000–0·9081)

Extradural 0·9288 (0·9083–0·9494) 0·9034 (0·8635–0·9349) 0·7936 (0·7880–0·7991) 0·8207 (0·7716–0·8631) 0·9068 (0·9027–0·9107)

Subarachnoid 0·9044 (0·8882–0·9205) 0·9100 (0·8844–0·9315) 0·6678 (0·6613–0·6742) 0·7758 (0·7406–0·8083) 0·9012 (0·8971–0·9053)

Calvarial fracture 0·9244 (0·9130–0·9359) 0·9002 (0·8798–0·9181) 0·7749 (0·7691–0·7807) 0·8115 (0·7857–0·8354) 0·9020 (0·8978–0·9061)

Midline shift 0·9276 (0·9139–0·9413) 0·9114 (0·8872–0·9319) 0·8373 (0·8322–0·8424) 0·8754 (0·8479–0·8995) 0·9006 (0·8964–0·9047)

Mass effect 0·8583 (0·8462–0·8703) 0·8622 (0·8439–0·8792) 0·6157 (0·6089–0·6226) 0·7086 (0·6851–0·7314) 0·9068 (0·9026–0·9108)

CQ500 dataset

Intracranial 
haemorrhage

0·9419 (0·9187–0·9651) 0·9463 (0·9060–0·9729) 0·7098 (0·6535–0·7617) 0·8195 (0·7599–0·8696) 0·9021 (0·8616–0·9340)

Intra-
parenchymal

0·9544 (0·9293–0·9795) 0·9478 (0·8953–0·9787) 0·8123 (0·7679–0·8515) 0·8433 (0·7705–0·9003) 0·9076 (0·8726–0·9355)

Intraventricular 0·9310 (0·8654–0·9965) 0·9286 (0·7650–0·9912) 0·6652 (0·6202–0·7081) 0·8929 (0·7177–0·9773) 0·9028 (0·8721–0·9282)

Subdural 0·9521 (0·9117–0·9925) 0·9434 (0·8434–0·9882) 0·7215 (0·6769–0·7630) 0·8868 (0·7697–0·9573) 0·9041 (0·8726–0·9300)

Extradural 0·9731 (0·9113–1·0000) 0·9231 (0·6397–0·9981) 0·8828 (0·8506–0·9103) 0·8462 (0·5455–0·9808) 0·9477 (0·9238–0·9659)

Subarachnoid 0·9574 (0·9214–0·9934) 0·9167 (0·8161–0·9724) 0·8654 (0·8295–0·8962) 0·8667 (0·7541–0·9406) 0·9049 (0·8732–0·9309)

Calvarial fracture 0·9624 (0·9204–1·0000) 0·9487 (0·8268–0·9937) 0·8606 (0·8252–0·8912) 0·8718 (0·7257–0·9570) 0·9027 (0·8715–0·9284)

Midline shift 0·9697 (0·9403–0·9991) 0·9385 (0·8499–0·9830) 0·8944 (0·8612–0·9219) 0·9077 (0·8098–0·9654) 0·9108 (0·8796–0·9361)

Mass effect 0·9216 (0·8883–0·9548) 0·9055 (0·8408–0·9502) 0·7335 (0·6849–0·7782) 0·8189 (0·7408–0·8816) 0·9038 (0·8688–0·9321)

Neither of the datasets was used during the training process. AUCs are shown for nine critical CT findings in both these datasets. Two operating points were chosen on the 
ROC curve for high sensitivity and high specificity, respectively. Absolute number used for calculation of sensitivity and specificity are in the appendix (p 7). AUC=area under 
the receiver operating characteristic curve. ROC=receiver operating characteristic. 

Table 4: Performance of the algorithms on the Qure25k and CQ500 datasets

For more on the CQ500 dataset 
and corresponding reads see 

http://headctstudy.qure.ai/
dataset
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to detect and separately report accuracy for each critical 
finding, including the five types of intracranial 
haemorrhage. Furthermore, there is very little literature 
to date describing the accurate use of deep learning 
algorithms to detect cranial fractures. We demonstrate 
that deep learning algorithms are able to perform this 
task with high accuracy. The validation of algorithms that 
detect mass effect and midline shift (both used to 
estimate severity of a range of intracranial conditions 
and the need for urgent intervention) in such a large 
number of patients is also unique.

The algorithms produced fairly good results for all 
the target findings on both the Qure25k and CQ500 
datasets. AUCs for all the findings apart from mass 
effect were greater than or approximately equal to 0·9. 

AUCs on the CQ500 dataset were better than those 
on the Qure25k dataset. We hypothesise that this might 
be because of two reasons. First, because radiologists 
reading the Qure25k dataset had access to clinical 
history of the patients, their reads incorporated extra 
clinical information not available in the scans. The 
algorithms did not have access to this information and 
therefore did not perform well. Second, a majority vote 
of three raters is a better gold standard than that of 
one rater. Indeed, we observed that AUCs of the 
algorithms on the CQ500 dataset were lower when a 
single rater was considered the gold standard instead of 
the majority vote (appendix p 5).

We expect that the Qure25k dataset and the first batch 
of the CQ500 dataset represent the population distri bution 
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Figure 2: ROC curves for the algorithms on Qure25k and CQ500 datasets
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a b s t r a c t

We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR)
brain images called ‘‘Multi-Atlas Label Propagation with Expectation–Maximisation based refinement’’
(MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly
performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further
adapt this framework to be applicable for the segmentation of brain images with gross changes in anat-
omy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by
multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-
refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI
segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of
MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To
demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain
images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a pro-
tocol to assess segmentation quality if no manual reference labels are available. Based on this protocol,
three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is supe-
rior to established label fusion techniques. We visually confirm the robustness of our segmentation
approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers
that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC)
or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with
favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images
and 66.8% accuracy using follow-up MR images. Furthermore, we are able to differentiate subjects with
the presence of a mass lesion or midline shift from those with diffuse brain injury with 76.0% accuracy.
The thalamus, putamen, pallidum and hippocampus are particularly affected. Their involvement predicts
TBI disease progression.

! 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With an estimated annual global incidence of 6.8 million cases,
traumatic brain injury (TBI) imposes a significant burden on
patients, their families, and health services (Irimia et al., 2012).
Usually caused by sudden acceleration/deceleration or focal
impacts, the lesions caused can be focal as in the case of contusions

or more diffuse (diffuse axonal injury (DAI)) (Meythaler et al.,
2001; Warner et al., 2010b). It is common for patients to have a
combination of these. After the acute injury secondary processes
including complex metabolic cascades, alterations in cerebral
blood flow and raised intracranial pressure may occur contributing
to the burden of injury. It is well recognised that complex patho-
physiological processes including secondary Wallerian-type
degeneration continue to occur months to years after the initial
insult (Meythaler et al., 2001; Ding et al., 2008; Warner et al.,
2010a). In order to improve treatment stratification and patient
outcomes, as well as more accurately predict outcome, we need

http://dx.doi.org/10.1016/j.media.2014.12.003
1361-8415/! 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Department of Computing, Imperial College London,
180 Queen’s Gate SW7 2AZ, UK.

E-mail address: christian.ledig@imperial.ac.uk (C. Ledig).
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racy in GOS classification. The classification results are summa-
rised in Table 6. The high specificity for MC classification shows
that the presented method does very well in detecting normal
appearing brains at the acute stage. The high specificity for GOS
classification confirms that the presented approach is able to pre-
dict a favourable outcome of a TBI. These findings suggest that
structural brain asymmetry could be a sufficient criterion to indi-
cate an unfavourable disease outcome. On the other hand, symme-
try seems to be a necessary criterion for favourable disease
outcome. It is not, however, a sufficient criterion to rule out an
unfavourable outcome. Receiver operating characteristic (ROC)
curves for these classification experiments are shown in Fig. 11.

A detailed summary of results for individual non-cortical struc-
tures for both MC and GOS classification is provided in Appendix F,
including p-values for group separation. These results suggest
structural asymmetry of non-cortical brain structures does not cor-
relate well with MC.

We calculated p-values for group separation using MALP-JF
without the proposed processing. Unlike MALP-EM, this setup
did not reveal any significant symmetry differences between GOS
groups for the thalamus (at the acute time point) or for the cau-

date, hippocampus and inferior lateral ventricle (at the follow up
time point). All the structures that show significant symmetry dif-
ferences between groups of clinical variables in the MALP-JF setup
are also found in the MALP-EM setup.

In an additional set of 1000 rounds of the 10-fold cross-valida-
tion, we determined in each run the p-value for the group separa-
tion on the training set using an unpaired two-sided Student’s t-
test for each of the 63 symmetry features (AAI). We calculated a
histogram of the 10 most significant structures in each run.
Fig. 12 shows the histogram for the GOS separation and thus the
regions that are particularly correlated with the disease outcome.
The plots show the 10 consistently most relevant structures for
GOS group separation using acute-phase (left) or follow-up (right)
MR images. This experiment reveals that asymmetry in subcortical
structures is particularly correlated with poor patient recovery.
Notably, asymmetry in the thalamus, pallidum, hippocampus,
putamen and occipital pole was found to discriminate TBI patients
with favourable from non-favourable outcome. Both thalamus and
hippocampus are known to be involved in TBI disease progression
(Bigler, 2001) and were found to have predictive value in previous
studies based on MR imaging (Strangman et al., 2010; Warner

Fig. 11. Receiver operating characteristic curves for classifying subjects according to MC using the sum of cortical AAI (left), and according to GOS at baseline (middle) and
follow up time point (right) using the accumulated non-cortical AAI.
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Fig. 12. Relevance of individual brain structures for GOS group separation. Sorted histogram of how often a structure’s asymmetry index was one of the 10 most significant
indices in the 10,000 (1000 rounds of 10-fold cross-validation) runs. The 10 structures that were picked most often based on acute-phase (left) or follow-up (right) MR
images.
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EM-refinement is restricted by these high prior label probabilities
P and thus unable to entirely correct this systematic error.

We tackle this problem by calculating relaxed priors PR from
the label probabilitiesP. Specifically we relax the probabilistic pri-
ors based on the probabilistic label fusion estimates and the actual
image intensities. Assuming a Gaussian distribution, we estimate a
common parameter set ðlCSF" like;rCSF" likeÞ of eight ‘‘CSF-like’’ struc-
tures. We define the set of structures denoted as ‘‘CSF-like’’ as

{background (essentially external CSF), 3rd ventricle, 4th ventricle,
CSF, right/left inferior lateral ventricle, right/left lateral ventricle}.
We furthermore estimate for each structure k an individual param-
eter set ðlk;rkÞ based on the probabilistic prior segmentation P:

lk ¼
P

ipikyiP
ipik

; rk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ipikðyi " lkÞ

2

P
ipik

s

ð1Þ

Fig. 2. Schematic process of the calculation of the subject specific spatial priorsP for an unsegmented target image Iu . After brain extraction and bias correction, the available
M atlases are registered to the space of Iu . Using these transformations, label maps and corresponding T1-weighted MR images are mapped to the space of Iu . The label maps
are then averaged into probabilistic priors for the individual structures using the joint label fusion (Wang et al., 2013). A subset of the 134 probabilistic labels is shown in
green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Schematic process of the segmentation refinement using prior relaxation, EM-optimisation and spatially weighted combination of probabilistic label maps on the
example of the hippocampal region. If registration consistently fails joint label fusion tends to label a significant number of voxels belonging to the inferior lateral ventricle as
hippocampus. These wrongly labelled low-intensity voxels lead to a high variance of the estimated intensity distribution within the hippocampus label (top left). The red
interval (top left intensity distribution) indicates for which voxels prior relaxation will be carried out. EM-refinement then allows correction of the mislabeled CSF voxels
leading to a sharper intensity distribution within the hippocampus (top right). The segmentations obtained using label fusion and EM-optimisation are finally merged into a
consensus segmentation (bottom right). This combination is based on spatially varying weights that are calculated based on the overlap of intra-label intensity distributions
(bottom left). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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CREACTIVE Imaging substudy

Obiettivo: valutare il ruolo biomarker basati su imaging TC di routine 
come tool prognostico


1. Raccolta di un dataset da centri GiViTI partecipanti al sottostudio 
imaging del progetto CREACTIVE. Raccolta delle CT disponibili da 
percorso clinico, senza richiesta di protocollo


2. Utilizzo di tecniche di analisi di immagine per l’estrazione di 
biomarker legati a dimensioni, forma, localizzazione di emorragie ed 
edema intraparenchimali, sia all’ammissione che nella loro 
evoluzione temporale



CREACTIVE Imaging substudy

IT0001

IT0001

GR0001

Centro di 
coordinamento 

GiViTI



CREACTIVE Imaging substudy



Imaging repository

Patients Series
GR001 28 58
IL001 1 1
IT029 3 5
IT031 4 11
IT034 1 1
IT036 32 122
IT038 1 4
IT062 4 5
IT064 112 583
IT079 74 190
IT088 14 15
IT099 45 177
IT100 145 493
IT101 17 48
IT442 17 69
IT510 2 2
IT513 1 1
IT544 57 224
SI009 129 474

8th February 2018

Patients: 687 
Series: 2483
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8th February 2018

Patients: 687 
Series: 2483

Patients Series
GR001 42 81
IL001 1 1
IT029 3 5
IT031 4 11
IT034 1 1
IT036 32 123
IT038 1 4
IT062 4 5
IT064 135 657
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IT088 14 15
IT099 45 177
IT100 207 720
IT101 17 48
IT438 10 39
IT442 17 69
IT510 2 2
IT513 1 1
IT544 57 224
SI009 206 758

Patients: 1004 
Series: 3549

6th November 2018



Automatic image processing system 

Aim: evaluate the viability of imaging biomarkers based on routine CT 
imaging as a prognostic tool


• routine CT collected from participating centers, with fiducial-based 
annotations on hemorrhagic lesions


• scans anonymized and uploaded to CREACTIVE study center

• 1921 (6th February) quality-controlled follow-up series collected from 

637 patients (data collection ongoing)

• target of 550 accurate manual segmentation of hemorrhagic lesions 

and edema


Current activities: 
• development of automated lesion and edema segmentation

• follow-up evaluation of volumes

• evaluation of prognostic model augmented with imaging data



Dataset (in progress)

test set

training set (obiettivo 2000)

Intraparenchymal


quality-controlled scans with the indication 

of the lesion’s position in some slices

1921

550

138



Axial                        Sagittal                        Coronal

Intraparenchymal                    Subdural                    Subarachnoid

Dataset



Original TC slice Manual segmentation

BLUE: edema 
RED: hematoma



Skip connection

Skip connection

Skip connection

A total of 1921 quality-controlled series were collected from 637 patients, after excluding series 
with strong artifacts (due to the presence of intracranial, radio-opaque devices in the scan). 


Manual segmentation of intraparenchymal hemorrhagic lesions and edema was performed on 
an initial dataset of 504 series from 141 patients. 


The dataset has been employed to train a deep learning-based, dense segmentation method 
(U-Net) for automatic segmentation and sizing of lesion and edema. Activity for manual 
segmentation of a batch of 550 series was started and is currently ongoing, with the aim of 
improving the performance of the automated segmentation method.

Automated segmentation model

TC image PRE-PROCESSING: 

• Clamp in interval 0-80 (Hounsfiled units)

• Resize to 256x256 pixels



Automated segmentation model



Hematoma segmentation

Dice coefficient:

• Training (159 scans):  mean  0.61 std 0.24 
• Validation (39 scans): mean 0.52 std 0.28

Dice coefficient:

• Training (368 scans):  mean 0.67 std 0.23 
• Validation (41 scans): mean 0.61 std 0.21

• Test (95 scans): mean 0.55 std 0.28
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Hematoma segmentation

Dice coefficient:

• Training (159 scans):  mean  0.61 std 0.24 
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Hematoma segmentation
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Hematoma segmentation

Dice coefficient:

• Training (349 scans):  mean 0.71 std 0.16 
• Validation (40 scans): mean 0.64 std 0.17

• Test (85 scans): mean 0.62 std 0.22

Training

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Validation

Fr
eq

ue
nc

y

Test

Dice coefficient:

• Training (368 scans):  mean 0.67 std 0.23 
• Validation (41 scans): mean 0.61 std 0.21

• Test (95 scans): mean 0.55 std 0.28

Training

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Validation

Fr
eq

ue
nc

y

Test



Hematoma segmentation

Dice coefficient:

• Training (368 scans):  mean 0.67 std 0.23 
• Validation (41 scans): mean 0.61 std 0.21

• Test (95 scans): mean 0.55 std 0.28

Dice coefficient:

• Training (159 scans):  mean  0.61 std 0.24 
• Validation (39 scans): mean 0.52 std 0.28



Hematoma volume estimation 

in follow-up scans

Blue: volume from ground truth.

Red: volume from automated segmentation. 

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10



Edema segmentation

Dice coefficient:

• Training (159 scans):  mean  0.50 std 0.21 
• Validation (39 scans): mean 0.46 std 0.19

Dice coefficient:

• Training (247 scans):  mean 0.50 std 0.24 
• Validation (39 scans): mean 0.50 std 0.21
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Edema segmentation

Dice coefficient:

• Training (159 scans):  mean  0.50 std 0.21 
• Validation (39 scans): mean 0.46 std 0.19
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Edema segmentation
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Dice coefficient:

• Training (159 scans):  mean  0.50 std 0.21 
• Validation (39 scans): mean 0.46 std 0.19

Dice coefficient:

• Training (247 scans):  mean 0.50 std 0.24 
• Validation (39 scans): mean 0.50 std 0.21

Edema segmentation



Edema segmentation

Dice coefficient:

• Training (247 scans):  mean 0.57 std 0.17 
• Validation (39 scans): mean 0.54 std 0.17
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CT biomarkers
Aim: automatically extract imaging biomarkers from CT and from the 
related segmentation. Use them as further input of a prognostic model 
based on clinical markers.


The main biomarkers are:

• volume of the lesion

• volume of the edema

• number of lesions

• position of the lesion


This biomarkers will be more specific of the standard biomarkers like 
the Marshall classification. This should lead to a more precise 
determination of the clinical outcome.


Available data: Actually clinical data for 387 out of 567 patients who 
had an annotated lesion are available, for a total of 1204 series. 

Of those, 64 patients had recovered, 92 survived with disability and 
238 deceased.



DICOM.Next + Imaging biomarker

Modello finale per quantificazione biomarker 
distribuito a centri (inizio 2019) tramite DICOM.Next



luca.antiga@orobix.com
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